Search results

1 – 10 of over 8000
Article
Publication date: 2 January 2023

Kangyin Dong, Jianda Wang and Xiaohang Ren

The purpose of this study is to examine the spatial fluctuation spillover effect of green total factor productivity (GTFP) under the influence of Internet development.

Abstract

Purpose

The purpose of this study is to examine the spatial fluctuation spillover effect of green total factor productivity (GTFP) under the influence of Internet development.

Design/methodology/approach

Using panel data from 283 cities in China for the period 2003–2016, this paper explores the spatial fluctuation spillover effect of internet development on GTFP by applying the spatial autoregressive with autoregressive conditional heteroscedasticity model (SARspARCH).

Findings

The results of Moran's I test of the residual term and the Bayesian information criterion (BIC) value indicate that the GTFP has a spatial fluctuation spillover effect, and the estimated results of the SARspARCH model are more accurate than the spatial autoregressive (SAR) model and the spatial autoregressive conditional heteroscedasticity (spARCH) model. Specifically, the internet development had a positive spatial fluctuation spillover effect on GTFP in 2003, 2011, 2012 and 2014, and the volatility spillover effect weakens the positive spillover effect of internet development on GTFP. Moreover, Internet development has a significant positive spatial fluctuation spillover effect on GTFP averagely in eastern China and internet-based cities.

Research limitations/implications

The results of this study provide digital solutions for policymakers in improving the level of GTFP in China, with more emphasis on regional synergistic governance to ensure growth.

Originality/value

This paper expands the research ideas for spatial econometric models and provides a more valuable reference for China to achieve green development.

Details

Management of Environmental Quality: An International Journal, vol. 34 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 September 2021

Peng Wang, Lihong Dong, Haidou Wang, Guolu Li, Yuelan Di, Xiangyu Xie and Dong Huang

The skin and skeleton of aircraft are connected by adhesives or rivets to bear and transfer aerodynamic load. It is easy for crack and fracture damage to occur under the action of…

Abstract

Purpose

The skin and skeleton of aircraft are connected by adhesives or rivets to bear and transfer aerodynamic load. It is easy for crack and fracture damage to occur under the action of cyclic load, thus reducing aircraft bearing capacity/integrity and causing serious security risks. Therefore, it is particularly important that passive wireless radio frequency identification (RFID) sensors be used for the health monitoring of aircraft skin in its whole life cycle. This paper aims to investigate the influence of miniaturization on the coupling effect between RFID tag sensors.

Design/methodology/approach

Two groups of crack sensing systems based on RFID tags were designed. Gain and mutual impedance of sensor tags were analyzed via mode analysis. The reliability of crack detection of both sensing systems was compared using a preset experimental scheme.

Findings

Miniaturized antennas can reduce edge influence and the coupling effect. Gain and mutual impedance decrease with the increase in distance between dual tags. Backscatter power shows a decreasing trend and threshold power to activate tags in reader antenna increases. Results show that the miniaturization of size is more suitable for the application of multiple sensors.

Originality/value

By comparing two groups of sensing systems, the consistency of crack detection sensitivity is better when small tags are placed in parallel, which provides a theoretical basis for the application of small, passive and densely distributed crack sensors in the future.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 July 2023

Bo Liu, Yue-dong Wang, Zhe Zhang and Qi Dong

This paper aims to study and modify the notch equivalent stress method, as well as to establish the notch equivalent stress range S–N curve and apply it to the fatigue assessment…

Abstract

Purpose

This paper aims to study and modify the notch equivalent stress method, as well as to establish the notch equivalent stress range S–N curve and apply it to the fatigue assessment of engineering examples.

Design/methodology/approach

This paper studies the notch equivalent stress method and puts forward the concept of “singular equivalent crack”. Combined with the fatigue test results, by proposing to consider the singular coefficient of the transition angle of the welded structure and the introduction of material correction factors, this paper derives the notch equivalent stress equation for commonly used welded joints applicable to steel, and finally establishes the notch equivalent stress range of the S–N curve.

Findings

The obtained results show that the dispersion of fatigue data is 65.6 and 75.4% for T-joints and transverse cross-joints, respectively, under S–N curves using notched equivalent stress compared to the nominal stress range. The fatigue evaluation error of the modified notch equivalent stress equation for transverse cross welded joints improved by 50.65%, 53.1 and 39.6% on average, respectively, compared to the original other methods. The fatigue evaluation error for T-joints improved by 13.4 and 13.9%, respectively, compared to the original other methods.

Originality/value

There are relatively few studies on the fatigue assessment of notch equivalent stress method. In this paper, the notch equivalent stress method is studied and modified to improve the accuracy of fatigue assessment of welded structures with singular stresses.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 10 July 2019

Xujian Zhao, Hui Zhang, Chunming Yang and Bo Li

In recent years, a great number of top conferences and workshops on artificial intelligence (AI) were held in China, showing Chinese AI plays an important role in the world…

Abstract

In recent years, a great number of top conferences and workshops on artificial intelligence (AI) were held in China, showing Chinese AI plays an important role in the world. Meanwhile, Chinese government announced an ambitious scheme, “New Generation Artificial Intelligence Development Plan,” for the country to become a world leader in AI technologies by 2030. The AI research in China has covered various aspects, ranging from chips to algorithms. This chapter attempts to give an overview of the recent advances of AI research and development in China, as well as some perspectives on the future development of AI in China.

Details

The New Silk Road Leads through the Arab Peninsula: Mastering Global Business and Innovation
Type: Book
ISBN: 978-1-78756-680-4

Article
Publication date: 20 March 2017

Yuzhe Liu, Jun Wu, Liping Wang, Jinsong Wang, Dong Wang and Guang Yu

The purpose of this study is to develop a modified parameter identification method and a novel measurement method to calibrate a 3 degrees-of-freedom (3-DOF) parallel tool head…

Abstract

Purpose

The purpose of this study is to develop a modified parameter identification method and a novel measurement method to calibrate a 3 degrees-of-freedom (3-DOF) parallel tool head. This parallel tool head is a parallel mechanism module in a five-axes hybrid machine tool. The proposed parameter identification method is named as the Modified Singular Value Decomposition (MSVD) method. It aims to overcome the difficulty of choosing the algorithm parameter in the regularization identification method. The novel measurement method is named as the vector projection (VP) method which is developed to expand the measurement range of self-made measurement implements.

Design/methodology/approach

Newton Iterative Algorithm based on Least Square Method is analyzed by using the Singular Value Decomposition method. Based on the analysis result, the MSVD method is proposed. The VP method transforms the angle measurement into the displacement measurement by taking full advantage of the ability that the 3-DOF parallel tool head can move in the X – Y plane.

Findings

The kinematic calibration approach is verified by calibration simulations, a Rotation Tool Center Point accuracy test and an experiment of machining an “S”-shaped test specimen.

Originality/value

The kinematic calibration approach with the MSVD method and VP method could be successfully applied to the 3-DOF parallel tool head and other 3-DOF parallel mechanisms.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 February 2022

Fangju Jia, Dong-dong Wang and Lianshui Li

The COVID-19 epidemic is still spreading globally and will not be completely over in a short time. Wearing a mask is an effective means to combat the spread of COVID-19. However…

Abstract

Purpose

The COVID-19 epidemic is still spreading globally and will not be completely over in a short time. Wearing a mask is an effective means to combat the spread of COVID-19. However, whether the public wear a mask for epidemic prevention and control will be affected by stochastic factors such as vaccination, cultural differences and irrational emotions, which bring a high degree of uncertainty to the prevention and control of the epidemic. The purpose of this study is to explore and analyze the epidemic prevention and control strategies of the public in an uncertain environment.

Design/methodology/approach

Based on the stochastic evolutionary game model of the Moran process, the study discusses the epidemic prevention and control strategies of the public under the conditions of the dominance of stochastic factors, expected benefits and super-expected benefits.

Findings

The research shows that the strategic evolution of the public mainly depends on stochastic factors, cost-benefit and the number of the public. When the stochastic factors are dominant, the greater the perceived benefit, the lower the cost and the greater the penalty for not wearing masks, the public will choose to wear a mask. Under the dominance of expected benefits and super-expected benefits, when the number of the public is greater than a certain threshold, the mask-wearing strategy will become an evolutionary stable strategy. From the evolutionary process, the government’s punishment measures will slow down the speed of the public choosing the strategy of not wearing masks. The speed of the public evolving to the stable strategy under the dominance of super-expected benefits is faster than that under the dominance of expected benefits.

Practical implications

The study considers the impact of stochastic factors on public prevention and control strategies and provides decision-making support and theoretical guidance for the scientific prevention of the normalized public.

Originality/value

To the best of the authors’ knowledge, no research has considered the impact of different stochastic interference intensities on public prevention and control strategies. Therefore, this paper can be seen as a valuable resource in this field.

Article
Publication date: 6 July 2021

Yunlong Li, Zhinong Li, Dong Wang and Zhike Peng

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Abstract

Purpose

The purpose of this paper is to discuss the asymptotic models of different parts with a pitting fault in rolling bearings.

Design/methodology/approach

For rolling bearings with a pitting fault, the displacement deviation between raceways and rolling elements is usually considered to vary instantaneously. However, the deviation should change gradually. Based on this shortcoming, the variation rule and calculation method of the displacement deviation are explored. Asymptotic models of different parts with a pitting fault are discussed, respectively. Besides, rolling bearing systems have prominent fractional characteristics unconsidered in the traditional models. Therefore, fractional calculus is introduced into the modeling of rolling bearings. New dynamic asymptotic models of different parts with a pitting fault are proposed based on fractional damping. The numerical simulation is performed based on the proposed model, and the dynamic characteristics are analyzed through the bifurcation diagrams, trajectory diagrams and frequency spectrograms.

Findings

Compared with the model based on integral calculus, the proposed model can better reflect the periodic characteristics and fault characteristics of rolling bearings. Finally, the proposed model is verified by the experiment. The dynamic characteristics of rolling bearings at different rotating speeds are analyzed. The experimental results are consistent with the simulation results. Therefore, the proposed model is effective.

Originality/value

(1) The above models are idealized, i.e. the local pitting fault is treated as a rectangle. When a component comes into contact with the fault, the displacement deviation between the component and the fault component immediately releases if the component enters the fault area and restores if the component leaves. However, the displacement deviation should change gradually. Only when the component touches the fault bottom, the displacement deviation reaches the maximum. (2) Due to the material's memory and fluid viscoelasticity, rolling bearing systems exhibit significant fractional characteristics. However, the above models are all proposed based on integral calculus. Integral calculus has some local characteristics and is not suitable for describing historical dependent processes. Fractional calculus can better describe the essential characteristics of the system.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 July 2021

Minchen Zhu, Lijian Wu, Dong Wang, Youtong Fang and Ping Tan

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances…

Abstract

Purpose

The purpose of this paper is to analytically predict the on-load field distribution and electromagnetic performance (induced voltage, electromagnetic torque, winding inductances and unbalanced magnetic force) of dual-stator consequent-pole permanent magnet (DSCPPM) machines using subdomain model accounting for tooth-tip effect. The finite element (FE) results are presented to validate the accuracy of this subdomain model.

Design/methodology/approach

During the preliminary design and optimization of DSCPPM machines, FE method requires numerous computational resources and can be especially time-consuming. Thus, a subdomain model considering the tooth-tip effect is presented in this paper. The whole field domain is divided into four different types of sub-regions, where the analytical solutions of vector potential in each sub-region can be rapidly calculated. The proposed subdomain model can accurately predict the on-load flux density distributions and electromagnetic performance of DSCPPM machines, which is verified by FE method.

Findings

The radial and tangential components of flux densities in each sub-region of DSCPPM machine can be obtained according to the vector potential distribution, which is calculated based on the boundary and interface conditions using variable separation approach. The tooth-tip effect is investigated as well. Moreover, the phase-induced voltage, winding inductances, electromagnetic torque and X-axis/Y-axis components of unbalanced magnetic forces are calculated and compared by FE analysis, where excellent agreements are consistently exhibited.

Originality/value

The on-load field distributions and electromagnetic performance of DSCPPM machines are analytically investigated using subdomain method, which can be beneficial in the process of initial design and optimization for such DSCPPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 April 2023

Kang-Jia Wang, Guo-Dong Wang and Feng Shi

The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the…

Abstract

Purpose

The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the traditional integer-order calculus cannot. The purpose of this paper is to develop a new fractional pulse narrowing nonlinear transmission lines model within the local fractional calculus for the first time and derive a novel method, namely, the direct mapping method, to seek for the nondifferentiable (ND) exact solutions.

Design/methodology/approach

By defining some special functions via the Mittag–Leffler function on the Cantor sets, a novel approach, namely, the direct mapping method is derived via constructing a group of the nonlinear local fractional ordinary differential equations. With the aid of the direct mapping method, four groups of the ND exact solutions are obtained in just one step. The dynamic behaviors of the ND exact solutions on the Cantor sets are also described through the 3D graphical illustration.

Findings

It is found that the proposed method is simple but effective and can construct four sets of the ND exact solutions in just one step. In addition, one of the ND exact solutions becomes the exact solution of the classic pulse narrowing nonlinear transmission lines model for the special case 9 = 1, which strongly proves the correctness and effectiveness of the method. The ideas in the paper can be used to study the other fractal partial differential equations (PDEs) within the local fractional derivative (LFD) arising in electrical and electronic engineering.

Originality/value

The fractional pulse narrowing nonlinear transmission lines model within the LFD is proposed for the first time in this paper. The proposed method in the work can be used to study the other fractal PDEs arising in electrical and electronic engineering. The findings in this work are expected to shed a light on the study of the fractal PDEs arising in electrical and electronic engineering.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 January 2017

Dong Wang, Jun Wu, Liping Wang, Yuzhe Liu and Guang Yu

The purpose of this paper is to describe and evaluate the time-varying and coupling dynamic characteristics of a 3-DOF parallel tool head.

Abstract

Purpose

The purpose of this paper is to describe and evaluate the time-varying and coupling dynamic characteristics of a 3-DOF parallel tool head.

Design/methodology/approach

From the view of control, a new dynamic index of a 3-DOF parallel tool head is proposed based on the dynamic model in the joint space. This index can reflect the time-varying and coupling dynamic characteristics which are the main characteristics of the parallel mechanisms, and its distribution in the whole workspace is also given. Through comparison of the dynamic load (driving current) of each driving shaft, a series of experiments is designed and carried out on a prototype to validate the effectiveness of the dynamic analysis. The tracking error of each driving shaft has also been taken into consideration.

Findings

The simulations of the index have the same variation law with the experimental results. The dynamic load of the driving shaft becomes larger with the increase of the dynamic index, and the dynamic performance becomes worse at the same time.

Originality/value

The main dynamic characteristics of the 3-DOF parallel tool head can be described and evaluated through this work.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 8000